

Requirements and Usage of NVM in Advanced Onbard Data Processing Systems

R. Some
NVM Conference
11/7/01

This work was performed at the Jet Propulsion Laboratory, California Institute of Technology under a contract with the National Aeronautics and Space Administration. This project is part of NASA's High Performance Computing and Communications Program, and is funded through the NASA Office of Space Sciences.

Spaceborne Computing:

- Past Rad6000
 - Basic C&D H functions (1-10MOPS)
- Present (well, almost) PPC-750 Rad (light)
 - Basic C&D H + simple data processing and task automation (10-100+ MOPS)
- Future Supercomputing
 - Science data processing, autonomy, situational awareness, intelligent spacecraft and constellation control (100 - 10,000MOPS+)

Why supercomputing in space?

- Only viable approach to the bandwidth problem - can't get the data down to earth
- Only viable approach to controlling constellations of cooperating satellites
- Only viable approach to reducing mission operations costs
- Only viable approach to real time intelligent decision making and science data gathering

REE

The REE Vision:

•Move commercial scalable supercomputing technology into space, in a form which meets the demanding environmental requirements, to enable a new class of science investigation and discovery.

Background

- Funded by Office of Space Science (Code S) as part of NASA's High Performance Computing and Communications Program
- Started in FY1996
- Guidelined at \$100M over 8 years

REE Impact on NASA and DOD Missions by FY05

- Faster Fly State-of-the-Art Commercial Computing Technologies within 18 month of availability on the ground
- Better Onboard computer operating at > 300 MOPS/watt scalable to mission requirements (> 100x Mars Pathfinder power performance)
- Cheaper No high cost radiation hardened processors or special purpose architectures

The Problem Set

Solar Powerd Missi

100.0

Science Return

Development Time

Latency **L**andwidth **Round Trip Delay**

Mariner It

Spacecraft Power Tren Missions of the Past and Present

REE Objectives

- •Demonstrate power efficiencies of 300 -1000 MOPS per watt in an architecture that can be scaled up to 100 watts, depending on mission needs.
- •Demonstrate new spaceborne applications on embedded high-performance computing testbeds which return analysis results to the earth in addition to raw data.
- •Develop fault-tolerant system software that will permit reliable operation for 10 years and more using commercially available or derived components.
- •Explore ultra-low power onboard computer systems which will help open the entire Solar System to exploration without the need for nuclear technology.

Science Teams

Five Science Application Teams Chosen to Drive Requirements and Demonstrate Benefits of HPC Onboard

Next Generation Space Telescope - John Mather/GSFC

- Onboard Cosmic Ray correction to the data
- Autonomous control and optimization of the adaptive optics

Gamma ray Large Area Space Telescope

- Peter Michelson/Stanford
 - Onboard cosmic ray rejection
 - Real time gamma ray burst identification

Orbiting Thermal Imaging Spectrometer - Alan Gillespie/U Washington

• Onboard Atmospheric corrections, Radiance calculations

Mars Rover Science - R. Steve Saunders/JPL

- Autonomous optimal terrain navigation
- Autonomous Field Geology

Solar Terrestrial Probe Program - Steve Curtis/GSFC

- Constellation/Formation Flying missions to probe the Sun-Earth Connection
- Onboard Plasma moment calculations, multi-instrument cross correlations, autonomous operations

REE Baseline Architecture

REE Issues

- COTS vs Rad Hard
 - It doesn't matter NVM is still required and (most of)
 - The requirements are the same
- GP Processors vs DSP's vs FPGA's
 - It doesn't matter NVM is still required and (most of)
 - The requirements are the same
- Application Domain NGST vs OTIS vs Rover
 - It doesn't matter NVM is still require and (most of)
 - The requirements are the same

NVM Usage/Requirements

- Mass Memory (Disk Emulator)
 - − 1-10 GB per CPCI board
 - IC density
 - Packaging density
 - 10-20 Watts per CPCI board
 - Medium Speed
 - 2-5 Gbits/Sec bidirectional
 - Burst mode
 - File oriented
 - 50-100 krad Si (100 mil Al shield)
 - SEU Tolerance
 - SEL, SEFI, SEMU and Catastrophic Failure Immune

NVM Usage/Requirements

- Processing Node (OS & state storage)
 - High speed
 - Execute directly from NVM or,
 - High speed download from NVM to execution memory
 - High speed store of state variables
 - Typical processor throughput 1-5 GWords/Sec
 - Typical DRAM speeds moving towards
 - Low Power
 - Processor, Bridge, Net I/O and DRAM already eat up too much power
 - 50-100krad Si (100 mil Al shield)
 - SEU tolerance
 - SEE Hard

NVM Usage/Requirements

- Processing Node (OS & state storage) cont.
 - Small memory, but high density
 - 1Mbyte will do, but more is better
 - 1 IC footprint
- General requirements/desirements
 - Low Cost
 - COTS/MOTS/SOTS

Questions

- Can NVM replace DRAM (speed/density)?
- If not, how close will get and when?
- Will COTS NVM technologies be rad tolerant & SEU/SEL hard?
- Will NVM technologies experience catastrophic SEE's